Detectability Analysis of Road Vehicles in Radarsat-2 Fully Polarimetric SAR Images for Traffic Monitoring
نویسندگان
چکیده
By acquiring information over a wide area regardless of weather conditions and solar illumination, space-borne Synthetic Aperture Radar (SAR) has the potential to be a promising application for traffic monitoring. However, the backscatter character of a vehicle in a SAR image is unstable and varies with image parameters, such as aspect and incidence angle. To investigate vehicle detectability in SAR images for traffic monitoring applications, images of four common types of vehicles in China were acquired using the fully polarimetric (FP) SAR of Radarsat-2 in our experiments. Methods for measuring a vehicle's aspect angle and backscatter intensity are introduced. The experimental FP SAR images are used to analyze the detectability, which is affected by factors such as vehicle size, vehicle shape, and aspect angle. Moreover, a new metric to improve vehicle detectability in FP SAR images is proposed and compared with the well-known intensity metric. The experimental results show that shape is a crucial factor in affecting the backscatter intensity of vehicles, which also oscillates with varying aspect angle. If the size of a vehicle is smaller than the SAR image resolution, using the intensity metric would result in low detectability. However, it could be improved in an FP SAR image by using the proposed metric. Compared with the intensity metric, the overall detectability is improved from 72% to 90% in our experiments. Therefore, this study indicates that FP SAR images have the ability to detect stationary vehicles on the road and are meaningful for traffic monitoring.
منابع مشابه
The Extended Sub-look Analysis In Polarimetric SAR Data For Ship Detection
The monitoring of maritime areas with remote sensing is essential for security reasons and also for the conservation of environment. The synthetic aperture radar (SAR) can play an important role in this matter by considering the possibility of acquiring high-resolution images at nighttime and under cloud cover. Recently, the new approaches based on the sub-look analysis for preserving the infor...
متن کاملTowards the wind direction determination in RADARSAT-2 polarimetric images
The interpretation of SAR images of the sea surface is difficult, due to the complexity of the geophysics and of the interaction mechanisms between electromagnetic and sea waves. The determination of the wind direction is crucial for the evaluation of the wind speed, but its retrieval is still an open issue. One of the few methods able to extract the sea surface wind from SAR data only has been...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملMultitemporal Radarsat-2 Polarimetric Sar Data for Urban Land-cover Mapping
The objective of this research is to evaluate multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using a novel classification scheme. Six-date RADARSAT-2 Polarimetric SAR data in both ascending and descending orbits were acquired during June to September 2008 in the rural-urban fringe of the Greater Toronto Area. The major land-cover types are builtup areas, roa...
متن کاملUnsupervised Classification of Fully Polarimetric SAR Image Based on Polarimetric Features and Spatial Features
Polarimetric SAR (PolSAR) has played more and more important roles in earth observation. Polarimetric SAR image classification is one of the key problems in the PolSAR image interpretation. In this paper, based on the scattering properties of fully polarimetric SAR data, combing the statistical characteristics and neighborhood information, an efficient unsupervised method of fully polarimetric ...
متن کامل